意法半导体mcu

通辽2023-05-31 10:36:37
14 次浏览大家的小苹果
联系人:何先生 用一个数字万用表搭在电容两端先充电然后开路量测电压掉下来的速度因为电容是开路的会耗电的就是漏电流了如果你量测出电压跟时间的曲线就可以反推出漏电流了记得用好一点的数字万用表,因为万用表本身的输入阻抗再大也是有限的,如果是质量较好的电容漏电流本来就不大,那么输入阻抗稍小的数字万用表就不准了。根据经验,在高频电路,开关电源电路有很多小电容是普通万用表无法正确判断出好坏的,有的电容量还有可能出现增加的可能。强烈建议用专用数字电容表测量。 准确测量电感线圈的电感量L和品质因数Q,可以使用万用表或LCR设备专门量测电感的感值, 采用数字万用表来检测可以检测电感是否开路或局部短路,以及电感量的相对大小可以用万用表作出粗略检测和判断,如果要量测必须采用LCR设备量测.检测电感时先进行外观检查,看线圈有无松散,引脚有无折断,线圈是否烧毁或外壳是否烧焦等现象,若有上述现象,则表明电感已经损坏.用万用表的欧姆挡测线圈的直流电阻,电感的直流电阻值一般很小,匝数多线经细的线圈能达几十欧:对于有抽头的线圈,各引脚之间的阻值均很小,仅有几欧姆左右,若用万用表RX1Ω挡测线圈的直流电阻,阻什无穷大说明线圈或引出线间已经开路损坏,阻值比正常值小很多,则说明有局部短路:阻值为零,说明线圈完全短路 对我们来说熟悉的电感应用莫过于变压器了,如下图所示为变压器的电路符号,假如左侧线圈匝数为100,右侧匝数为50,如果左侧接220V交流电,那么右侧感应出来的电压为110V,即“匝数比=电压比”而电流却会截然相反,如果左侧流进1A电流,那么右侧会流出2A的电流,即“匝数比=电流的反比”,因为电感只会对电压、电流进行变化,而不能对功率进行变化,如果电压和电流都为正比显然是不合情理的。所谓低通滤波器是:低频信号可以通过,而高频信号不能通过,电路原理图如下图,输入信号如果是直流电,那么电感相当于一根导线,现在是短路,信号会经过电感,直接输出,而不经过电阻,如果我们逐渐升高电流的频率,由于电感对交流电有阻碍作用,通过电感的信号会慢慢变小,直到达到某一个频率,当高于这个频率之后的电流再也无法通过,这时候就形成了低通滤波器,这个频率就叫做截止频率,公式为f=R/(2πL) 在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制,并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。 在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小 但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。 不同的铁氧体抑制元件,有不同的抑制频率范围。通常磁导率越高,抑制的频率就越低。此外,铁氧体的体积越大,抑制效果越好。在体积一定时,长而细的形状比短而粗的抑制效果好,内径越小抑制效果也越好。但在有直流或交流偏流的情况下,还存在铁氧体饱和的问题,抑制元件横截面越大,越不易饱和,可承受的偏流越大。  EMI 吸收磁环/磁珠抑制差模干扰时,通过它的电流值正比于其体积,两者失调造成饱和,降低了元件性能;抑制共模干扰时,将电源的两根线(正负)同时穿过一个磁环,有效信号为差模信号,EMI 吸收磁环/磁珠对其没有任何影响,而对于共模信号则会表现出较大的电感量。磁环的使用中还有一个较好的方法是让穿过的磁环的导线反复绕几下,以增加电感量。可以根据它对电磁干扰的抑制原理,合理使用它的抑制作用。 片式电感:在电子设备的PCB板电路中会大量使用感性元件和EMI滤波器元件。这些元件包括片式电感和片式磁珠,以下就这两种器件的特点进行描述并分析他们的普通应用场合以及特殊应用场合。表面贴装元件的好处在于小的封装尺寸和能够满足实际空间的要求。除了阻抗值,载流能力以及其他类似物理特性不同外,通孔接插件和表面贴装器件的其他性能特点基本相同。在需要使用片式电感的场合,要求电感实现以下两个基本功能:电路谐振和扼流电抗。
联系电话:15814452260
意法半导体mcu - 图片 1
意法半导体mcu - 图片 2
意法半导体mcu - 图片 3
意法半导体mcu - 图片 4
意法半导体mcu - 图片 5
意法半导体mcu - 图片 6